Displaying 1 - 62 of 62 tests
AACT

This antibody labels the cytoplasm of histiocytes and neoplasms of histiocytic origin, as well as monocytes and macrophages of human colon, tonsil and skin.

Immunohistochemistry (IHC)
AATAlpha-1-Antitrypsin (AAT) is useful in the study of inherited AAT deficiency, benign and malignant hepatic tumors and yolk sac carcinoma. Sensitivity and specificity of the results have made this antibody a useful tool in the screening of patients with cryptogenic cirrhosis or other forms of liver disease with portal fibrosis of uncertain etiology. Immunohistochemistry (IHC)
Alcian BlueSpecial stain. Alcian blue is intended to identify weakly sulfated mucins in tissue samples. Immunohistochemistry (IHC)
BCL10

BCL-10 is an N-terminal CARD (Caspase Recruitment Domain) containing protein that is involved in the adaptive immune response. It is also a substrate for MALT1. Mutations in the gene can lead to lymphoma, mucosa-associated lymphoid type. It is useful in the assessment of pancreatic tumors to distinguish acinar cell carcinoma from primitive neuroectodermal tumor (PNET), solid pseudopapillary tumor (SPT) and pancreatic blastoma (PB).

Immunohistochemistry (IHC)
BerEP4Ber-EP4 recognizes two glycoproteins of 34 and 49 kDa present on the surface and the cytoplasm of all epithelial cells except the superficial layers of squamous epithelial, hepatocytes and parietal cells. It does not label mesothelial cells and rarely marks mesotheliomas. It shows a broad spectrum of reactivity with human epithelial cells including simple epithelia and basal layers of stratified non-keratinized squamous epithelium and epidermis. Ber-EP4 reportedly distinguishes adenocarcinomas from pleural mesotheliomas. Immunohistochemistry (IHC)
BG8This antibody is specific for the Lewis Y (Type 2 Chain) carbohydrate antigen. Lewis Y has been evaluated as a clinical marker for the diagnosis and prognosis of cholangiocarcinoma, hepatocellular carcinoma and breast cancer. It was also shown that BG8 reacts predominantly with lung adenocarcinomas and is negative focally or weakly positive in epithelial mesotheliomas. Immunohistochemistry (IHC)
CA19.9In normal tissues, the CA19.9 antigen has been demonstrated in ductal epithelium of the breast, kidney, salivary gland, sweat glands, respiratory epithelium of the lung, colon epithelium, pancreatic acini and ducts, biliary epithelium in the liver and prostate epithelium. Gastrointestinal carcinomas are positive, as well as transitional cell carcinomas of the bladder, endometrial adenocarcinomas, thyroid papillary, gallbladder carcinomas and lung carcinomas, including adenocarcinomas, bronchoalveolar cell carcinomas, squamous and small cell carcinomas. Immunohistochemistry (IHC)
CAM 5.2Anti-Cytokeratin (CAM 5.2) has a primary reactivity with human keratin proteins that correspond to Moll`s peptides #7 and #8, Mr 48 and 52 Kd. Cytokeratin 8 is present on secretory epithelia of normal human tissue but not on stratified squamous epithelium. CAM 5.2 stains most epithelial derived tissue, including liver, renal tubular epithelium, hepatocellular and renal cell carcinomas. CAM 5.2 may not react with some squamous cell carcinomas. Immunohistochemistry (IHC)
CancerTYPE ID® with reflex to NeoTYPE® Cancer Profile

CancerTYPE ID is a proprietary molecular cancer classifier used to identify unknown or unclear tumor types and subtypes in patients with metastatic cancer. When ordered through NeoGenomics, classification with CancerTYPE ID is followed by tumor profiling for actionable biomarkers using the NeoTYPE® Cancer Profile most appropriate for the tumor type identified by Cancer TYPE ID. Tech-only options for FISH and IHC within the NeoTYPE Cancer Profile are available.

CancerTYPE ID is performed and billed separately by NeoGenomics’ contracted reference laboratory, Biotheranostics, Inc., an independent CLIA-licensed and CAP-accredited reference laboratory. The test uses quantitative RT-PCR to measure the expression of 92 genes in the patient’s specimen and classifies the tumor by matching the gene expression profile to a database of more than 2000 known tumor types and subtypes. Using this technology, CancerTYPE ID can identify 50 different tumor types and subtypes, covering >95% of all solid tumors based on incidence.1 The test reports a main cancer type with the highest probability, as well as a list of tumor types that may be ruled out with 95% confidence. 

CancerTYPE ID may be ordered as a stand-alone test directly from Biotheranostics, Inc. Please see www.cancertypeid.com.   

Molecular
CD31CD31 is a 130kDa transmembrane glycoprotein that is shared by vascular lining cells, megakaryocytes and platelets. This marker is highly restricted to endothelial neoplasms among all tumors of the soft tissue and its sensitivity is excellent. 100% of angiosarcomas and hemangiomas are CD31 positive. However, Kaposi’s sarcoma (KS) is labeled more consistently by CD34 than by CD31. CD31 has also been used as a prognostic marker measuring tumor angiogenesis. CD31 also stains histiocytes. Immunohistochemistry (IHC)
CD68CD68 is an antibody directed against lysosomes. It is important for identifying macrophages in tissue sections. It stains macrophages in a wide variety of human tissues, including Kupffer cells and macrophages in the red pulp of the spleen, lamina propria of the gut, lung alveoli, and bone marrow. This antibody reacts with myeloid precursors and peripheral blood granulocytes. It shows strong granular cytoplasmic staining of chronic and acute myeloid leukemia and also reacts with true histiocytic neoplasia. It also stains granular cell tumors and some cases of melanoma, renal cell carcinoma, and pleomorphic sarcoma. Tumors of lymphoid origin are usually not stained. Immunohistochemistry (IHC)
CDX2CDX2 is an intestine specific transcription factor that regulates both the proliferation and differentiation of intestinal epithelial cells. It is expressed in the nuclei of epithelial cells throughout the intestine, from duodenum to rectum. The CDX2 protein is expressed in primary and metastatic colorectal carcinomas and has also been demonstrated in the intestinal metaplasia of the stomach and intestinal-type gastric cancer. It is not expressed in the normal gastric mucosa. CDX2 may be used in identifying metastatic carcinoma of colonic or other gastrointestinal tract origin in the setting of an unknown primary tumor. Immunohistochemistry (IHC)
CEA (Mono)Carcinoembryonic antigen (CEA) is usually demonstrated as a linear labeling of the apical poles of cells lining the glandular lumen and occasionally as weak staining near the apex of normal colonic epithelial cells. Tumors tend to display an increased cytoplasmic staining. In specific cases, CEA can be useful in tumor diagnosis. Pancreatic carcinomas, testicular tumors, gallbladder neoplasms and granular cell myoblastomas all stain positive for CEA, while malignant tumors of brain, prostate, skin, lymphoreticular tissues, hepatocellular carcinomas, esophageal squamous cell carcinomas and mesothelioma fail to stain for CEA. Immunohistochemistry (IHC)
CEA (Poly)Polyclonal carcinoembryonic antigen (CEA) antibody stains a larger percentage of cholangiocarcinomas compared to hepatocellular carcinomas. Approximately 95% of olangiocarcinomas are stained diffusely and strongly with polyclonal CEA, whereas show a canalicular staining pattern with this antibody. Immunohistochemistry (IHC)
CK HMW (CK903/34BE12)CK903 (34betaE12) is a high molecular weight cytokeratin present in all squamous epithelium and their carcinomas. This antibody recognizes cytokeratins 1, 5, 10 and 14 that are found in complex epithelia. There has been no reactivity with cells derived from simple epithelia, mesenchymal tumors, lymphomas, melanomas, neural tumors and neuroendocrine tumors. One useful application is the identification of the basal cell layer in prostate tissue in the determination of carcinoma. Immunohistochemistry (IHC)
CK17Cytokeratin 17 (CK17) is an effective marker to distinguish myoepithelial cells from luminal epithelium of various glands (mammary, sweat, salivary, bronchial, tracheal, laryngeal, esophageal) and benign from malignant forms of tumors, e.g. mammary gland tumors. Predominant expression of CK17 is the characteristic feature of basal cell carcinomas. It is often positive in carcinomas of pancreatic or biliary origin. Immunohistochemistry (IHC)
CK19Cytokeratin 19 (CK19) is a member of the type I acidic subfamily of keratins. It is expressed in various different human tissues. CK19 labels ductal and glandular epithelia, prostatic epithelia, and non-keratinizing squamous epithelia. This antibody is useful in the diagnosis of breast and cervical carcinoma. CK19 is not expressed in hepatocytes, therefore, antibody to CK19 is also useful in the distinction of liver metastasis from hepatocellular carcinomas. Immunohistochemistry (IHC)
CK20Cytokeratin 20 (CK20) positivity is seen in the majority of adenocarcinomas of the colon, mucinous ovarian carcinomas, transitional cell, and Merkel cell carcinomas, and frequently in adenocarcinomas of the stomach, bile system and pancreas. CK7/CK20 immunostaining patterns may be helpful in separating pulmonary from colonic adenocarcinomas. Immunohistochemistry (IHC)
CK5/6D5/16 B4 clone of CK5/6 antibody reacts strongly with cytokeratins 5 and 6. Cytokeratin 5/6 have been found valuable for the distinction between low differentiated squamous cell carcinoma and adenocarcinoma. It labels mesothelioma, and epithelial basal cells in prostate and tonsil. No reactivity with other mesodermally derived tissues, such as muscle and connective tissues, has been observed. Anti-CK 5/6 has also been found useful in the differential diagnosis of atypical proliferations of the breast. Immunohistochemistry (IHC)
CK7Cytokeratin 7 (CK7) antibody reacts with proteins that are found in most ductal, glandular and transitional epithelium of the urinary tract and bile duct epithelial cells. CK7 distinguishes between lung and breast epithelium that stain positive, and colon and prostate epithelial cells that are negative. It also reacts with many benign and malignant epithelial lesions, e.g. adenocarcinomas of the ovary, breast and lung. Transitional cell carcinomas are positive and most prostate cancers are negative. This antibody does not recognize other intermediate filament proteins. Immunohistochemistry (IHC)
cMETThe cMET tyrosine kinase receptor, normally expressed by epithelial cells, is overexpressed and amplified in a variety of human tumors, including non-small cell lung carcinoma (NSCLC). High levels of intratumor cMET expression have been associated with a more aggressive biology and a worse prognosis in NSCLC. Engelman et al. reported that cMET amplification induced resistance to gefitinib in a gefitinib-sensitive lung cancer cell line. Moreover, cMET inhibition with a cMET tyrosine kinase inhibitor (PHA-665,752) restored gefitinib sensitivity. Immunohistochemistry (IHC)
CMV

In situ hybridization for detection of cytomegalovirus (CMV) RNA.

In Situ Hybridization (ISH)
DPC4The gene DPC4 (deleted in pancreatic carcinoma 4, also called SMAD4) was identified in 18q21.3 This gene is frequently mutated and deleted in pancreatic carcinomas (55%) and less frequently (20 - 22%) in colon carcinomas. Loss of expression is specific for pancreatic malignancy (in-situ or invasive) vs. benign process, particularly helpful in biopsies. Immunohistochemistry (IHC)
GastrinGastrin, a polypeptide hormone, occurs naturally in three forms: gastrin-14, gastrin-17 and gastrin-34. This antibody labels gastrin or gastrin-analogue producing cells in gastrin-secreting tumors and G cell hyperplasia. Immunohistochemistry (IHC)
GlucagonGlucagon antibody is used for the identification of tumors and hyperplasias of pancreatic islets. This antibody labels A cells of the endocrine mammalian pancreas. It reacts with glucagon in a large number of mammalian species. Immunohistochemistry (IHC)
GNAS Mutation Analysis

Bi-directional sequencing of exons 8 and 9 of the GNAS gene to detect mutation hot spots in codons R201 and Q227.

Molecular
Hereditary Cancer Comprehensive Panel

Next-gen sequencing of all coding regions and intron-exon boundaries is performed concurrently for the following 73 genes: AKT1, APC, ATM, ATR, BAP1, BARD1, BMPR1A, BRCA1, BRCA2, BRIP1, CDH1, CDK4, CDKN2A, CEBPA, CHEK1, CHEK2, CTNNA1, EPCAM, ETV6, FAM175A, GALNT12, GATA2, GEN1, GREM1, HOXB13, KLLN, MEN1, MLH1, MRE11A, MSH2, MSH6, MUTYH, MYH1, MYH2, MYH3, MYH4, MYH6, MYH7, MYH8, MYH9, MYH10, MYH11, MYH13, MYH14, MYH15, NBN, NTRK1, PALB2, PIK3CA, PMS2, POLD1, POLE, PPM1D, PRSS1, PTEN, RAD50, RAD51, RAD51C, RAD51D, RET, RUNX1, SDHB, SDHC, SDHD, SMAD4, STK11, TERC, TERT, TP53, TP53BP1, VHL, WT1, and XRCC2. Note: Patient and physician or genetic counselor signatures on the NeoGenomics Consent for Hereditary Cancer Genetic Testing form are required. Testing will be put on hold until signatures are received.

Molecular
INSM1

INSM1 is a transcription factor that is a sensitive and specific marker for neuroendocrine tumors.  It is a nuclear stain, and is as good if not better than synaptophysin and is superior to chromogranin. It is rarely expressed on adenocarcinoma or squamous cell carcinomas without neuroendocrine differentiation. 

Immunohistochemistry (IHC)
InsulinInsulin is composed of a and b chains connected through the C-peptide. The main storage site for insulin is the pancreatic islets. Antibodies to insulin are important as a marker of islet cell tumor of pancreas (insulinoma). Immunohistochemistry (IHC)
Ki67

Ki67 is a nuclear protein that is expressed in proliferating cells. Ki67 is preferentially expressed during late G1, S, M, and G2 phases of the cell cycle, while cells in the G0 (quiescent) phase are negative for this protein. Increased proliferative activity is associated with more aggressive tumor and decreased disease-free survival period.
Note: Computer-assisted image analysis for Ki-67 is only validated for breast cancer and neuroendocrine carcinoma.

Immunohistochemistry (IHC)
KRAS Exon 4 Mutation Analysis

Bi-directional sequencing of exon 4 of the KRAS gene corresponding to amino acids  R97 through Q150.  Codon 117 and 146 mutations are detected. For solid tumors, tumor enrichment is performed before extraction.  This test may be ordered separately or by reflex after standard KRAS Mutation Analysis. Testing is available separately or in combination with BRAF, HRAS and NRAS in the RAS/RAF Panel. Testing is approved for specimens from the state of New York.

Molecular
KRAS Mutation Analysis

Bi-directional sequencing of exons 2 and 3 of the KRAS gene. High-sensitivity sequencing is used for enhanced detection of mutations in codons 12, 13, 59, and 61.  For solid tumors, tumor enrichment is performed before extraction. Testing is available separately or in combination with BRAF, HRAS and NRAS in the RAS/RAF Panel. Testing is approved for specimens from the state of New York.  

Molecular
MesothelinMesothelin is a 40kDa cell surface glycoprotein selectively expressed by mesothelial cells and malignant mesotheliomas, as well as by non-mucinous ovarian carcinomas, breast carcinomas, pancreatic carcinomas, and squamous tumors of the esophagus and cervix. Immunohistochemistry (IHC)
MET (c-MET) Mutation Analysis

Bi-directional Sanger sequencing of MET is performed using PCR primers designed to target hotspot mutations in exons 14, 16, 17 and 19.

Molecular
MET FISHProbes: MET (7q31) | Centromere 7
Disease(s): Multiple solid tumor cancers including lung (NSCLC), gastric, esophageal, endometrial
FISH
MUC1

Mucin 1 (MUC1) is a high molecular weight glycoprotein that is found on the apical surface of many glandular epithelia, including the gastrointestinal, respiratory, urinary, reproductive tracts and some hematopoietic cell lineages. MUC1 has been implicated in progression of numerous types of cancer, including breast, colon, lung, gastric and pancreatic cancers. MUC1 expression in tumors is greatly increased and accompanied by altered aberrant expression patterns that become more diffuse when compared to the normal apically restricted pattern.

Immunohistochemistry (IHC)
MUC2Mucin 2 (MUC2) expression is detected in human tissues such as normal colon, breast, prostate, and salivary gland, as well as in gastrointestinal, colonic, breast and prostate neoplasia. This antibody labels MUC2 in normal colon and colonic carcinomas where it produces intense perinuclear staining in goblet cells. Immunohistochemistry (IHC)
MUC5Mucin 5 (MUC5) is expressed in gastric mucosa, and in gall bladder epithelium. MUC5 antibody is recommended for use as part of a panel of antibodies for the characterization of mucin expression and in differentiation of intestinal metaplasia as well as gastric and pancreaticobiliary carcinomas. Immunohistochemistry (IHC)
MucicarmineSpecial stain. Mucicarmine staining is used to identify epithelial mucins, namely acid mucopolysaccharides. Staining is useful to distinguishing mucin negative undifferentiated squamous cell lesions from mucin positive adenocarcinomas. In addition, this product will stain the mucopolysaccharide capsule of Cryptococcus neoformans. Immunohistochemistry (IHC)
NeoARRAY™ SNP/Cytogenetic Profile

The NeoARRAY SNP/Cytogenetic Profile is available for hematological, solid tumor, and pregnancy loss indications. With the best genome-wide coverage available, this test employs an enhanced SNP microarray with over 2.6 million SNP and non-polymorphic markers for detection of copy number variants (deletions, duplications, and amplifications) and loss of heterozygosity or uniparental disomy (LOH or UPD) in any chromosome. Sensitivity and specificity for detection of copy number variants >400 kb is >99%. Testing may not reliably detect abnormalities present in less than 20% of the cells tested. Balanced rearrangements, including translocations and inversions, are not detectable by this method. Clients may request NeoARRAY on POC as the sole test, or they may order POC cytogenetics with reflex to NeoARRAY if the POC culture fails or if cytogenetic results are normal. For reflex orders, if there is no cell attachment or growth after 14 days in culture, a cytogenetics failure report will be issued and NeoARRAY will be performed. If there is limited cell attachment after 14 days in culture, NeoGenomics will contact the client for instructions. When array testing is not performed, a fee will be charged for DNA extraction (which is performed upon specimen receipt).

Molecular
NeoLAB™ Solid Tumor Monitor - Liquid Biopsy

The NeoLAB™ Solid Tumor Monitor is a blood test that uses cell-free circulating tumor DNA (ctDNA) or RNA in combination with next-generation sequencing (NGS) to detect mutations in the following 48 genes: ABL1, AKT1, ALK, APC, ATM, BRAF, CDH1, CDKN2A, CSF1R, CTNNB1, EGFR, ERBB2, ERBB4, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAQ, GNAS, HNF1A, HRAS, IDH1, JAK2, JAK3, KDR, KIT, KRAS, MET, MLH1, MPL, NOTCH1, NPM1, NRAS, PDGFRA, PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53, and VHL. The EGFR T790 mutation is tested at high sensitivity (10^-4). Test orders include summary interpretation of all results together. NOTE: One-time baseline molecular testing at NeoGenomics on the solid tumor is required. Please see details in Specimen Requirements.

Molecular
NeoTYPE Discovery Profile for Solid Tumors

This test is performed by sequencing the entire coding regions of the genes listed unless another method is noted. ABL1, ABL2, ACVR1B, AKT1, AKT2, AKT3, ALK, AMER1 (FAM123B), APC, AR, ARAF, ARFRP1, ARID1A, ARID1B, ARID2, ASXL1, ATM, ATR, ATRX, AURKA, AURKB, AXIN1, AXL, BAP1, BARD1, BCL2, BCL2L1, BCL2L2, BCL6, BCOR, BCORL1, BLM, BRAF, BRCA1, BRCA2, BRD4, BRIP1, BTG1, BTK, C11orf30, CARD11, CBFB, CBL, CCND1, CCND2, CCND3, CCNE1, CD274, CD79A, CD79B, CDC73, CDH1, CDK12, CDK4, CDK6, CDK8, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CEBPA, CHD2, CHD4, CHEK1, CHEK2, CIC, CREBBP, CRKL, CRLF2, CSF1R, CTCF, CTNNA1, CTNNB1, CUL3, CYLD, DAXX, DDR2, DICER1, DNMT3A, DOT1L, EGFR, EP300, EPHA3, EPHA5, EPHA7, EPHB1, ERBB2, ERBB3, ERBB4, ERG, ERRF11, ESR1, EZH2, FAM46C, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCL, FAS, FAT1, FBXW7, FGF10, FGF14, FGF19, FGF23, FGF3, FGF4, FGF6, FGFR1, FGFR2, FGFR3, FGFR4, FH, FLCN, FLT1, FLT3, FLT4, FOXL2, FOXP1, FRS2, FUBP1, GABRA6, GATA1, GATA2, GATA3, GATA4, GATA6, GID4 (C17orf39), GLI1, GNA11, GNA13, GNAQ, GNAS, GPR124, GRIN2A, GRM3, GSK3B, H3F3A, HGF, HNF1A, HRAS, HSD3B1, HSP90AA1, IDH1, IDH2, IGF1R, IGF2, IKBKE, IKZF1, IL7R, INHBA, INPP4B, IRF2, IRF4, IRS2, JAK1, JAK2, JAK3, JUN, KAT6A (MYST3), KDM5A, KDM5C, KDM6A, KDR, KEAP1, KEL, KIT, KLHL6, KMT2A (MLL), KMT2C (MLL3), KMT2D (MLL2), KRAS, LMO1, LRP1B, LYN, LZTR1, MAGI2, MAP2K1 (MEK1) , MAP2K2 (MEK2) , MAP2K4 (MEK4), MAP3K1 (MEKK) , MCL1, MDM2, MDM4, MED12, MEF2B, MEN1, MET, MITF, MLH1, MPL, MRE11A, MSH2, MSH6, MTOR, MUTYH, MYC, MYCL (MYCL1), MYCN, MYD88, NBN, NF1, NF2, NFE2L2, NFKBIA, NKX2-1, NOTCH1, NOTCH2, NOTCH3, NPM1, NRAS, NSD1, NTRK1, NTRK2, NTRK3, NUP93, PAK3, PALB2, PARK2, PAX5, PBRM1, PDCD1LG2, PDGFRA, PDGFRB, PDK1, PIK3C2B, PIK3CA, PIK3CB, PIK3CG, PIK3R1, PIK3R2, PLCG2, PMS2, POLD1, POLE, PPP2R1A, PRDM1, PREX2, PRKAR1A, PRKCI, PRKDC, PRSS8, PTCH1, PTEN, PTPN11, QKI, RAC1, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD54L, RAF1, RANBP2, RARA, RB1, RBM10, RET, RICTOR, RNF43, ROS1, RPTOR, RUNX1, RUNX1T1, SDHA, SDHB, SDHC, SDHD, SETD2, SF3B1, SLIT2, SMAD2, SMAD3, SMAD4, SMARCA4, SMARCB1, SMO, SNCAIP, SOCS1, SOX10, SOX2, SOX9, SPEN, SPOP, SPTA1, SRC, STAG2, STAT3, STAT4, STK11, SUFU, SYK, TAF1, TBX3, TERC, TERT, TET2, TGFBR2, TNFAIP3, TNFRSF14, TOP1, TOP2A, TP53, TSC1, TSC2, TSHR, U2AF1, VEGFA, VHL, WISP3, WT1, XPO1, ZBTB2, ZNF217, ZNF703, ALK FISH, BRAF FISH, HER2 FISH, MET FISH, c-MYC FISH, PDGFRA Amplification FISH, PTEN FISH, RET FISH, ROS1 FISH and PD-L1 IHC. Tumor Mutation Burden (TMB) testing is performed with all Discovery Profiles. Test orders include summary interpretation of all results together.

Molecular
NeoTYPE Other Solid Tumor Profile

This test is performed by sequencing the entire coding regions of the genes listed unless another method is noted. AKT1, BRAF, EGFR, FGFR1, FGFR2, FGFR3, GNAS, HRAS, IDH1, IDH2, JAK3, KIT, KRAS, MET, NOTCH1, NRAS, PDGFRA, PIK3CA, PTEN, PTPN11, SMAD4, SMO, SRC, TP53, MET FISH, PTEN FISH, and PD-L1 IHC. Tumor Mutation Burden (TMB) testing and individual genes from a validated list of genes can be added. Test orders include summary interpretation of all results together. FISH components of NeoTYPE Profiles may be ordered as "Tech-Only" by pathology clients who wish to perform the professional component.

Molecular
NeoTYPE Pancreas Tumor Profile

The Pancreas Tumor Profile is an NGS-based assay performed by sequencing the entire coding regions of the genes listed unless other method is noted. ARID1A, BRAF, BRCA1, BRCA2, CDKN2A, EGFR, ERBB2, ERBB4, FGFR1, FGFR2, FGFR3, HRAS, KIT, KRAS, MET, Microsatellite Instability (MSI), NOTCH1, NRAS, PBRM1, PIK3CA, PTEN, SMAD4, SMO, TP53, VHL, HER2 FISH, MET FISH, PTEN FISH and PD-L1 IHC. MSI is performed by fragment analysis. Tumor Mutation Burden (TMB) testing and individual genes from a validated list of genes can be added. Test orders include summary interpretation of all results together. FISH components of NeoTYPE Profiles may be ordered as "Tech-Only" by pathology clients who wish to perform the professional component. BRCA1/2 testing will be performed unless opted out.

Molecular
NeoTYPE Precision Profile for Solid Tumors

The NeoTYPE Precision Profile for Solid Tumors utilizes next-generation sequencing to detect mutations in the following 48 genes: ABL1, AKT1, ALK, APC, ATM, BRAF, CDH1, CDKN2A, CSF1R, CTNNB1, EGFR, ERBB2, ERBB4, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, GNA11, GNAQ, GNAS, HNF1A, HRAS, IDH1, JAK2, JAK3, KDR, KIT, KRAS, MET, MLH1, MPL, NOTCH1, NPM1, NRAS, PDGFRA, PIK3CA, PTEN, PTPN11, RB1, RET, SMAD4, SMARCB1, SMO, SRC, STK11, TP53, VHL and PD-L1 IHC. This test is performed by sequencing the enitre coding regions of the genes listed unless another method is noted. Tumor Mutation Burden testing can be added. Test orders include summary interpretation of all results together.

Molecular
NSE (Neuron Specific Enolase)In normal tissue, most neurons and their axonal and dendritic processes stain strongly positive for Neuron Specific Enolase (NSE), with the exception of Purkinje cells. Schwann cells, cells of the adrenal medulla, and paraganglia also contain NSE. Endocrine cells of the skin (Merkel cells), respiratory and GI tract epithelium, pituitary parathyroid, and pancreatic islets and C cells of thyroid all stain positively for NSE. NSE is expressed in ganglioneuromas, neuroblastomas, Schwannomas and malignant melanomas. It is also present in pheochromocytomas and paragangliomas. Carcinoids, medullary thyroid carcinomas, pituitary adenomas and endocrine tumors of the pancreas and GI tract all show positive immunoreactivity for NSE. NSE is found in neuroendocrine carcinoma of the skin (Merkel cell tumor) and small cell carcinoma of the lung. Immunohistochemistry (IHC)
p21p21 is a cyclin dependent protein kinase inhibitor and is a member of a family of proteins that functions to slow down cell division. p21 is found in t cells as they transitions from G1 phase to S phase. Low nuclear expression of p21 has been associated with poor prognosis in colon and prostate carcinomas. Immunohistochemistry (IHC)
p27p27 (KIP1) belongs to the family of cell cycle regulators that cause cell cycle arrest in G1 phase. p27 promotes apoptosis, plays a role in terminal differentiation of some tissues and mediates chemosensitivity in solid tumors. Decreased p27 KIP1 expression in tumors is associated with a more aggressive tumor phenotype such as poor histologic grade, presence of lymphovascular invasion and higher growth fraction. These findings have been validated on various cancers such as breast, colon, esophagus, stomach, lung and prostate. Immunohistochemistry (IHC)
p40p40 antibody recognizes ΔNp63—a p63 isoform. It is equivalent to p63 in sensitivity for squamous cell carcinoma, but it is markedly superior to p63 in specificity, which eliminates a potential pitfall of misinterpreting a p63-positive adenocarcinoma as squamous cell carcinoma. These findings strongly support the routine use of p40 for the diagnosis of pulmonary squamous cell carcinoma. Immunohistochemistry (IHC)
p53The product of the p53 gene is a nuclear phosphoprotein that regulates cell proliferation. Excess accumulation of the mutant p53 gene product results in inactivation of its tumor suppressor function and cellular transformation. Overexpression of mutant p53 gene has also been associated with high proliferative rates and poor prognosis in breast, colon, lung, and brain cancer, as well as in some leukemias and lymphomas. Immunohistochemistry (IHC)
Pan-CytokeratinMonoclonal antibodies AE1 and AE3 recognize the acidic and basic subfamilies of cytokeratin, respectively, thus the combination of these two antibodies can be used to detect almost all human epithelia. In surgical pathology, it is an important marker for carcinoma as well as some special tumor types which have an epithelial component or differentiation. This cocktail has been used to differentiate epithelial from non-epithelial tumors. Immunohistochemistry (IHC)
pHistone H3 (PHH3)Phosphohistone H3 (PHH3) is a marker of cells in the late G2-M phase of the cell cycle. It is not expressed in apoptotic cells which may be confused with mitotic figures on a routine H&E stained slide. PHH3 can be used as a surrogate of mitotic activity or as an independent prognostic marker in breast carcinomas. Immunohistochemistry (IHC)
RRM1

RRM1 is crucial for DNA synthesis and damage repair. High levels of RRM1 are associated with G2 cell cycle arrest and increased apoptosis in vitro.

Immunohistochemistry (IHC)
S100pExpression of S100P, a member of the S100 family, is increased in a number of tumors, including pancreas, lung, breast, and ovary carcinomas. S100P can be seen in many pancreatic ductal carcinoma, and it displays no staining in the benign pancreatic ducts and acinar glands. Immunohistochemistry (IHC)
SomatostatinSomatostatin is a useful marker of D-cells of pancreatic islet cells. D-cells are used to identify hyperplasia of the pancreatic islets. Most of these tumors are malignant, giving rise to somatostatinomas. Somatostatin suppresses gastric acid secretion, gallbladder contractions and pancreatic insulin secretion; therefore, the most common clinical manifestations of patients with these tumors are mild diabetes. Immunohistochemistry (IHC)
SynaptophysinAntibody to synaptophysin reacts with neuroendocrine neoplasms of neural as well as epithelial types. In combination with chromogranin A and NSE antibodies, the antibody to synaptophysin is very useful in the identification of normal neuroendocrine cells and neuroendocrine neoplasms. Immunohistochemistry (IHC)
TP53 Mutation Analysis

Bi-directional sequencing of TP53 exons 4-9.

Molecular
TryptaseThis antibody labels a mast cell tryptase. It will also show reactivity to basophils, but to a lesser degree. Immunohistochemistry (IHC)
Tumor Mutation Burden

Tumor Mutation Burden (TMB) testing at NeoGenomics measures the number of non-synonymous DNA coding sequence changes per megabase of sequenced DNA. Testing is performed routinely within the NeoTYPE™ Discovery Profile, can be added to any of the NeoTYPE Solid Tumor Profiles, and is available as a stand-alone test. Results are reported as low, high intermediate, and high upper quartile in reference to the median genomic TMB value determined across a wide variety of tumor types in an internal validation study. TMB is also called tumor mutational burden or tumor mutation load (TML). 

Molecular
Universal Fusion/Expression Profile

The Universal Fusion/Expression Profile is a targeted RNA sequencing panel that utilizes next-generation sequencing (NGS) to detect all relevant fusion transcripts in 1,385 genes associated with hematologic or solid tumor cancers. It is especially useful for testing patients with rare diseases. Learn more about the Universal Fusion/Expression Profile. See the full 1,385 gene list here.

Molecular
VimentinVimentin is the major intermediate filament in a variety of mesenchymal cells, including endothelial cells, all fibroblastic cells, macrophages, Sertoli cells, melanocytes, lymphocytes and ovarian granulosa cells. Vimentin is found in all types of sarcomas and lymphomas. Positive staining for vimentin is seen in most cells of fibrosarcomas, liposarcomas, malignant fibrous histocytomas, angiosarcomas, chondrosarcomas and lymphomas. All melanomas and Schwannomas are strongly vimentin-positive. Immunohistochemistry (IHC)
Warthin StarrySpecial stain. Warthin Starry stain is intended to identify Helicobacter pylori in tissue samples. Immunohistochemistry (IHC)