Longitudinal Neoadjuvant and Post-operative Evaluation of Circulating Tumor DNA in Early Breast Cancer Using a Tumor-Informed Assay: Updated Analysis of the TRACER Cohort

INTRODUCTION

- Breast cancer is a leading cause of cancer-related death in women worldwide with disease often diagnosed in the early or localized setting.
- Many patients diagnosed with early breast cancer undergo systemic therapy (SCT), usually in the form of multimodality chemotherapy, delivered in a risk-adapted strategy based on routine clinical factors.
- Despite the routine use of radiological and pathologic assessment, full understanding of an individual patient's response to therapy is not fully understood or characterized.
- The assessment of ctDNA and associated therapy-related dynamic changes in breast cancer has been shown to be prognostic. However, the prognostic utility of next-generation highly sensitive assays is currently unknown.
- RaDaR (Neoadjuvant Tumor-informed ctDNA analysis) is a personalized tumor-informed assay capable of detecting ctDNA with high sensitivity and specificity via deep sequencing of up to 10 tumor-specific mutations, identified by tumor- and trait-specific algorithms.
- ctDNA detection with the RaDaR assay after the completion of neoadjuvant therapy is associated with an imminent risk of disease recurrence in high-risk patients (HR+) and triple-negative (TNBC).
- Early data illustrating the performance of the RaDaR assay in the neoadjuvant setting combined with adjuvant surveillance was previously evaluated. Here we present an updated analysis of the TRACER cohort.

METHODS

- Participants were enrolled between October 2017 and February 2022 at the University of Toronto (TRACER).
- Plasma samples (1 × 10 ml) were collected at baseline, during treatment, mid-cycle, and at adjuvant follow-up under the IRB-approved study protocol (Figure 1).
- All participants enrolled in TRACER were scheduled to undergo surgery±chemotherapy and were treated with adjuvant systemic therapy.
- Sonar variants were identified through whole-exome sequencing of available sequential formalin-fixed, paraffin-embedded tissue from a diagnostic biopsy or surgical pathology (method described in design personalized familial assay protocol).
- The study cohort was sequenced to identify confirming signals derived from clinical characteristics of the patients and genomic information.
- Personalized ctDNA familial assays were performed on all available plasma samples by Neoradix. ctDNA positivity was defined as presence or absence of a predesigned list of variants.
- Clinical and pathologic characteristics, treatment, and response outcomes were evaluated.
- Recurrence outcomes were not updated on December 1, 2022.

RESULTS

- 162 participants were identified from TRACER with 11% enrolled in the primary analysis (Figure 3 and 4).
- ctDNA levels were analyzed from all collected timepoints.
- Median clinical follow-up from diagnosis was 3 years (range: 0.3-6 years).
- A significant drop in ctDNA was observed from diagnosis (median 10% (IQR 50%) to 0% (IQR 0%)), with clear separation of events.
- Median estimated variant allele frequency (vAF) was 0.083% (range: 2.93% to 7.5%).

CONCLUSIONS

- RaDaR is a sensitive, tumor-informed assay, which detects ctDNA at baseline in most patients prior to NAT.
- The rate of baseline ctDNA detection varied by receptor subtype and was significantly associated with clinical grade but not other baseline clinical variables.
- ctDNA detection at baseline was prognostic. All participants experiencing disease recurrence had detectable ctDNA at baseline.
- Persistent ctDNA detection measured midway through NAT was prognostic of disease relapse in HR+ and TNBC.
- Clearance of ctDNA was observed with initiation of change in adjuvant systemic therapy but relapse was observed if this was not durable.
- ctDNA can be detected using RaDaR with long lead times prior to clinical recurrence. The clinical utility of monitoring and interventional strategies require prospective evaluation.

ACKNOWLEDGEMENTS

- The authors acknowledge the contribution of the TRACER cohort participants, the collaborators, and the team at Neoradix.
- They would like to thank theNeoradix team for their support and contribution to the study.

REFERENCES