Comparison of PD-L1 expression in primary and metastatic lung cancer biopsies

Emily A. Prince,¹ Vladislav Chizhevsky,² Josette William Ragheb,² James Pratt,¹ Dimple Pandya,¹ David Huron¹

¹Bristol Myers Squibb, Princeton, NJ, USA; ²NeoGenomics Laboratories, Inc., Aliso Viejo, CA, USA

codes are valid for 30 days after the congress presentation d

Background

- Programmed death-1/programmed death ligand 1 (PD-1/PD-L1) inhibitors have been approved for use in lung cancer (Table 1)¹⁻⁴
- PD-L1 expression, as assessed using an approved PD-L1 immunohistochemistry (IHC) assay, may be associated with greater clinical benefit from PD-L1 inhibitors in lung cancer^{5,6}
- Multiple studies have demonstrated heterogeneous PD-L1 expression within the primary tumor and between the primary tumor and metastatic sites in lung cancer⁷⁻⁹
- Most of these studies were retrospective analyses performed at a single institution⁷⁻⁹
- Characterizing the variation of PD-L1 expression between paired primary lung tumor and metastatic site biopsies from a real-world cohort of patients may contribute to an improved understanding of the biology of PD-L1 expression

Table 1. Current FDA-approved PD-L1 IHC assays in NSCLC

Antibody clone	28-81,10	22C3 ^{2,11}	SP142 ^{3,12}			
Assay	Dako PD-L1 IHC 28-8 pharmDx	Dako PD-L1 IHC 22C3 pharmDx	Ventana PD-L1 (SP142)			
For use with (drug)	Nivolumab ± ipilimumab	Pembrolizumab	Atezolizumab			
Approval status in NSCLC	Companion ^a /complementary ^b	Companion	Companion ^c /complementary ^d			
Approved cutoffs (scoring algorithm)	≥ 1%, ^{a,b} ≥ 5%, ^b ≥ 10% ^b (TC)	≥ 1% (TPS)	≥ 50% (TC) or ≥ 10% (IC)			

^aCompanion diagnostic to nivolumab + ipilimumab in patients with 1L metastatic NSCLC expressing PD-L1 on ≥ 1% of TCs, with no EGFR or ALK genomic tumor aberrations; ^bComplementary diagnostic to nivolumab in patients with NS NSCLC that has progressed after platinum-based chemotherapy; ^cIn patients with 1L metastatic NSCLC, with no EGFR or ALK genomic tumor aberrations; ^dIn patients with metastatic NSCLC who had disease progression during or following platinum-containing chemotherapy. 1L, first-line; ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor; IC, immune cell; NS NSCLC, non-squamous non-small cell lung cancer; TC, tumor cell; TPS, tumor proportion score.

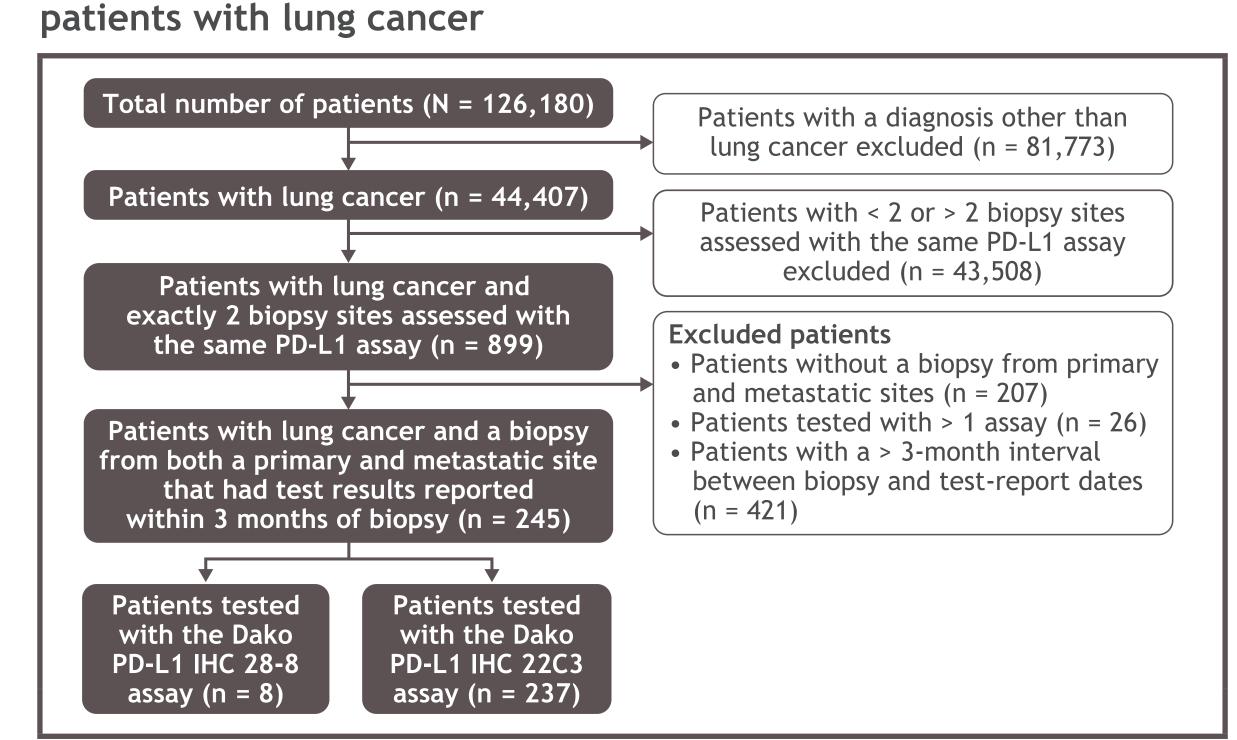
Study objective

 Compare PD-L1 expression between paired biopsies from primary tumor and metastatic sites in a real-world cohort of patients with lung cancer

Methods

Patient samples

- NeoGenomics Laboratories (Fort Myers, FL), a US national reference laboratory, reported PD-L1 test results between October 2015 and January 2020
- PD-L1 assays were performed per manufacturer's protocols for each respective assay at the time of analysis
- Patients were included if they met the following inclusion criteria:
- Biopsies tested with the Dako PD-L1 IHC 28-8 or 22C3 pharmDx assays
- Only 2 biopsy sites: 1 from the primary lung tumor and 1 from a metastasis
- Both biopsies tested with the same PD-L1 IHC assay
- Biopsies collected ≤ 3 months apart
- Test ordered dates ≤ 3 months apart
- Patients were excluded if both assays were used on the same biopsy to eliminate bias towards either test
- Test results were linked to clinical characteristics provided by Symphony Healthcare Solutions (Phoenix, AZ) using unique identifiers, and analyzed by Bristol Myers Squibb


Analyses

- The percentage of TCs expressing PD-L1 was determined by trained pathologists from NeoGenomics Laboratories
- Positive, negative, and overall percentage agreement (PPA, NPA, and OPA) for PD-L1 expression between the primary tumor and metastatic sites was assessed at the 1%, 5%, 10%, 25%, and 50% cutoffs
- The difference in PD-L1 expression between the primary tumor and metastatic sites was assessed in the overall population and by metastatic site
- The agreement for PD-L1 expression between primary tumor and metastatic sites was assessed with Passing-Bablok regression
- The difference in PD-L1 expression was analyzed in patients who had their second biopsies collected after the result of the first biopsy was reported

Results

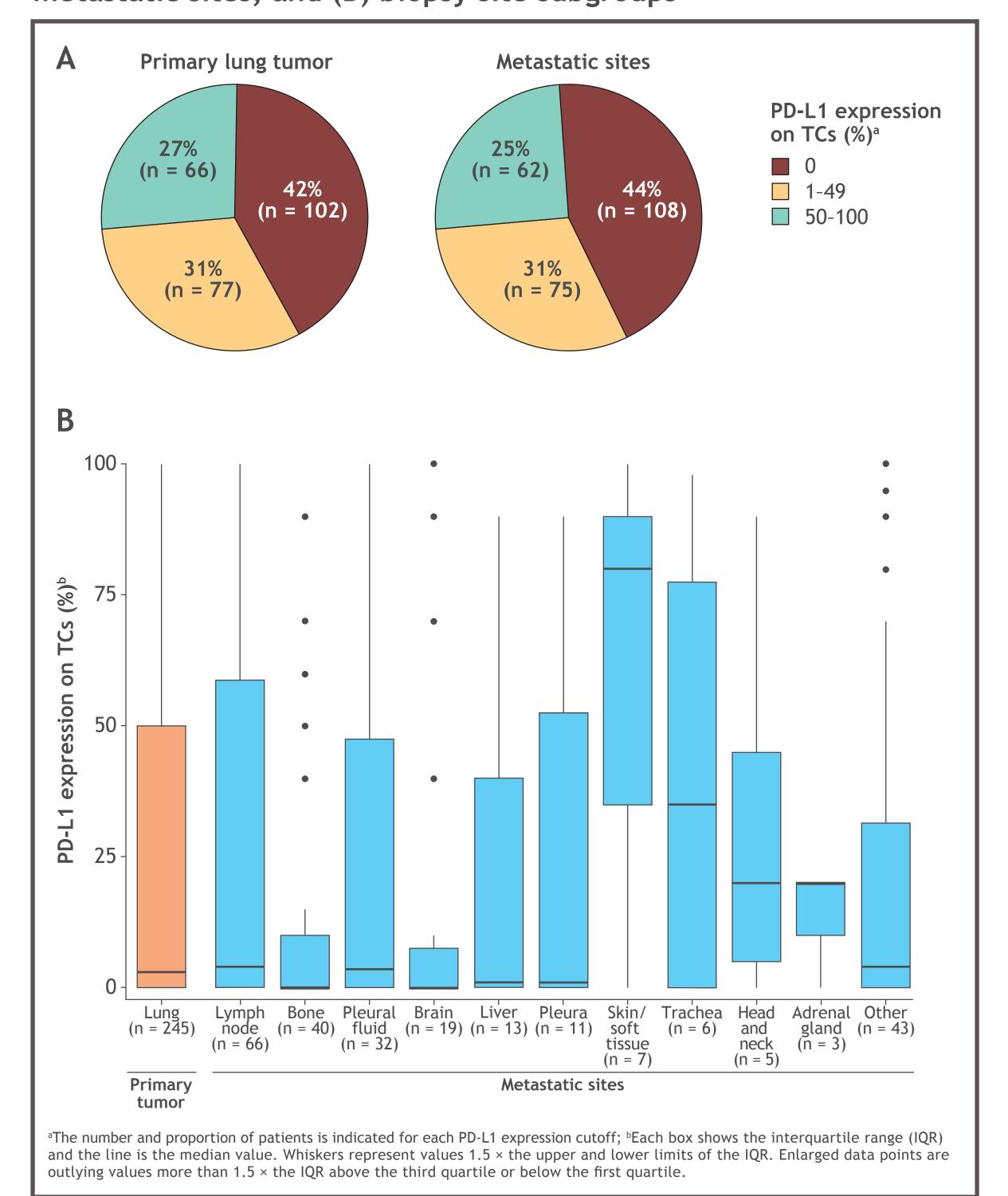
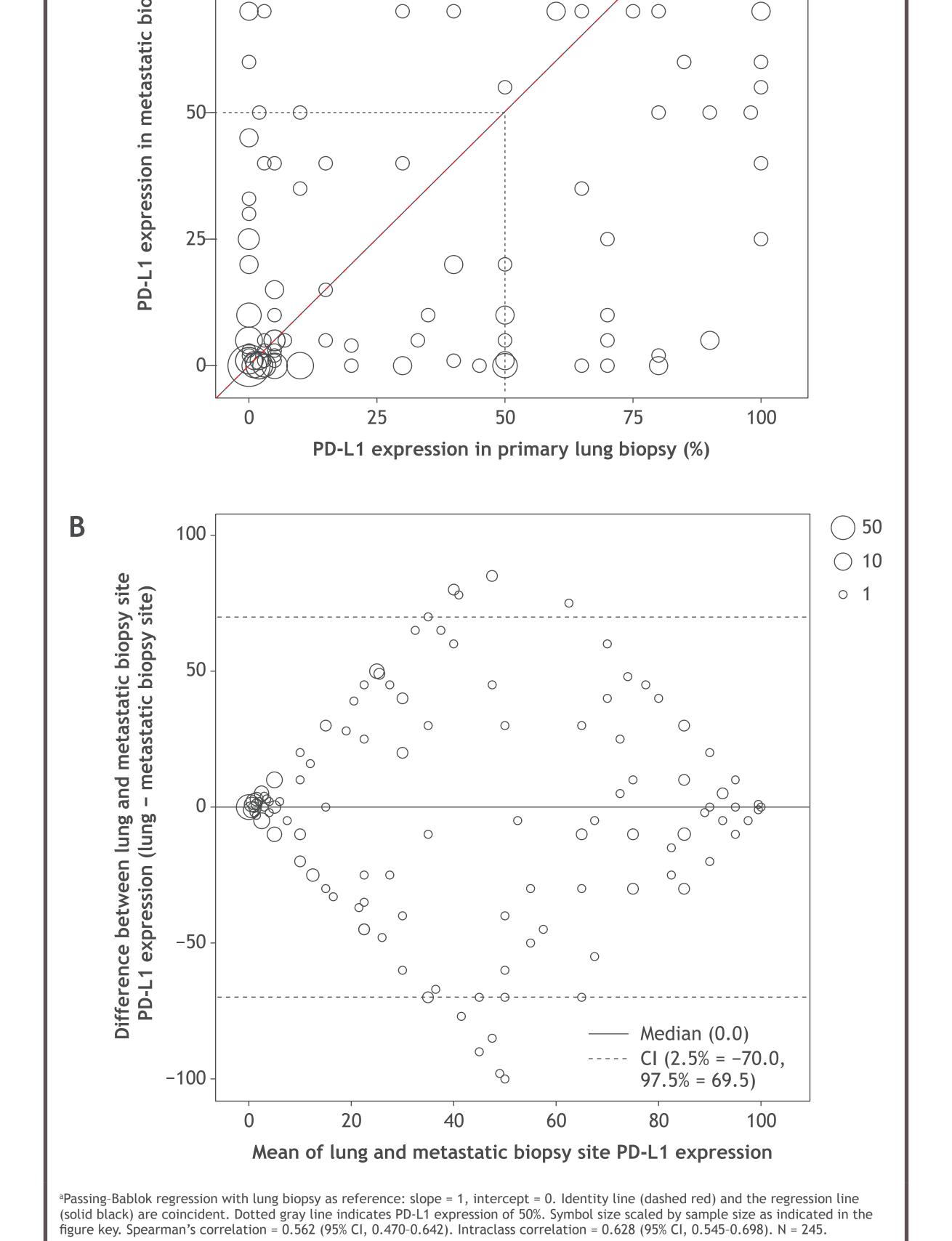

- NeoGenomics Laboratories reported PD-L1 test results for biopsies from 126,180 patients between October 2015 and January 2020
- In total, 44,407 patients had a confirmed diagnosis of lung cancer, of whom 245 had paired biopsies from primary tumor and metastatic sites that met the inclusion criteria (Figure 1)
- A subset of 144 patients had their second biopsy collected after the PD-L1 test result for the first biopsy was reported

Figure 1. Sample disposition for PD-L1 expression testing in

- PD-L1 expression levels were variable in primary tumor and metastatic sites (Figure 2A)
- The proportion of patients in each PD-L1 expression category was similar in the primary tumor and metastatic sites
- PD-L1 expression levels were variable within and across biopsy sites (Figure 2B)

Figure 2. PD-L1 expression in (A) primary lung tumor and metastatic sites, and (B) biopsy site subgroups



 Overall, the expression of PD-L1 on TCs was poorly correlated between primary tumor and metastatic sites (Kendall's tau 0.448 [95% CI, 0.368-0.529]) (Figure 3)

Figure 3. (A) Correlation of and (B) difference in PD-L1 expression between primary lung tumor and metastatic sites

Kendall's tau correlation = 0.448 (95% CI, 0.368-0.529)

00 00 0 1

• The magnitude and direction of differences in PD-L1 expression between primary tumor and metastatic sites were heterogeneous (Table 2) There was no consistent trend for higher or lower PD-L1 expression in biopsies from metastatic sites relative to the primary tumor

Table 2. Difference in PD-L1 expression between primary lung tumor and metastatic sites

PD-L1 expression difference (n = 245)	n (%)
0%-5%	133 (54)
6%-10%	28 (11)
11%-20%	9 (4)
> 20%	75 (31)
Lung = metastatic site	76 (31)
Lung < metastatic site	81 (33)
Lung > metastatic site	88 (36)

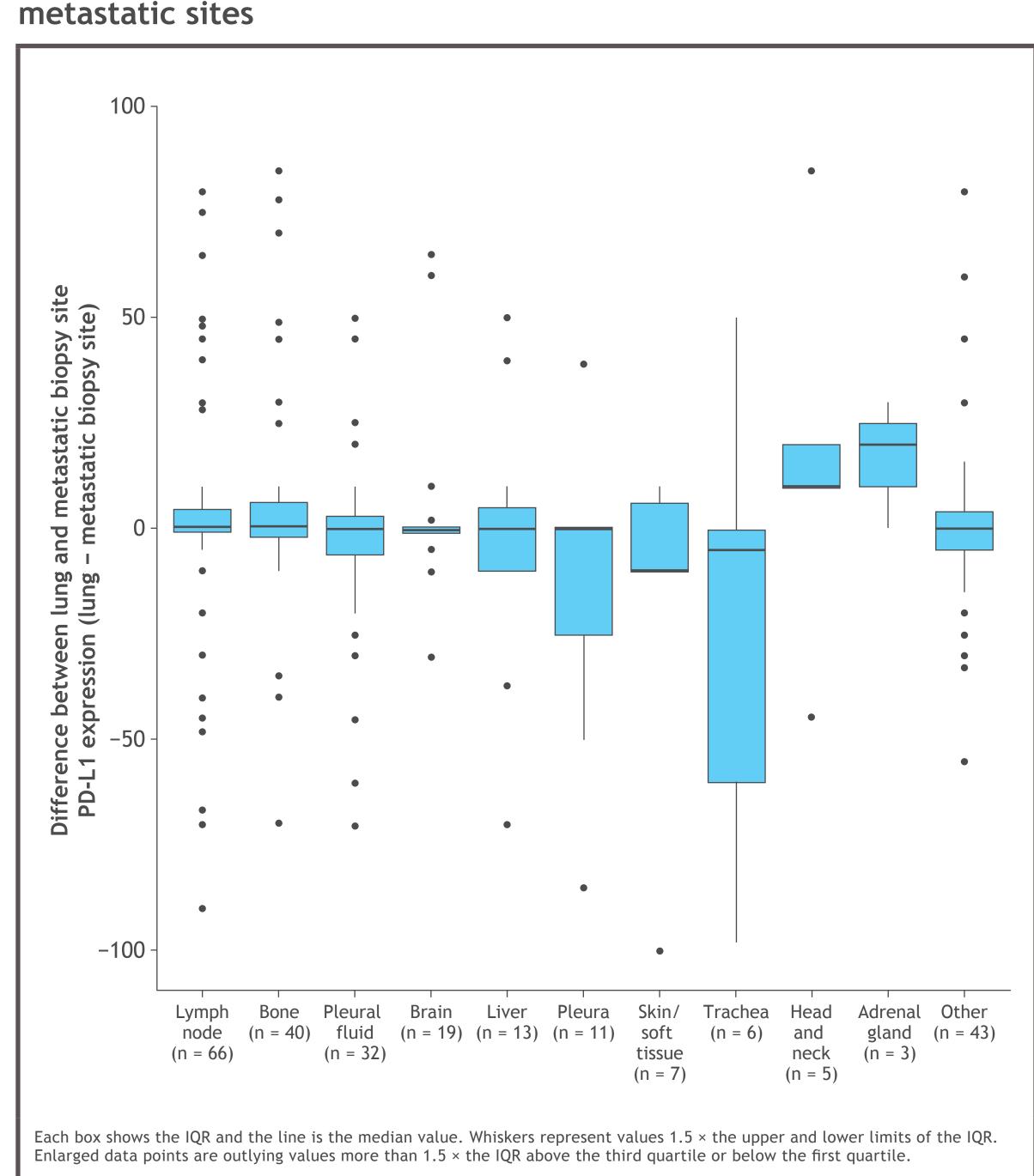

 OPA was 68%-82% (Cohen's kappa 0.35-0.53) across all cutoffs evaluated and appeared to increase with higher PD-L1 expression cutoffs (**Table 3**)

Table 3. Agreement for PD-L1 expression between primary lung tumor and metastatic sites across a range of cutoffs

	Primary lung tumor as reference				
PD-L1 expression cutoffs (% TC)	PPA (95% CI)	NPA (95% CI)	OPA (95% CI)	Cohen's kappa (95% CI)	
1%	71 (63-77)	65 (55-73)	68 (62-74)	0.35 (0.23-0.47)	
5%	71 (62-78)	75 (67-82)	73 (67-78)	0.46 (0.35-0.57)	
10%	68 (59-77)	80 (73-86)	76 (70-80)	0.49 (0.38-0.60)	
25%	65 (55-75)	85 (78-89)	78 (73-83)	0.51 (0.39-0.62)	
50%	64 (52-74)	89 (83-93)	82 (77-86)	0.53 (0.41-0.66)	

 No metastatic sites showed a trend for higher or lower PD-L1 expression on TCs than the primary tumor (Figure 4)

Figure 4. Difference in PD-L1 expression between lung tumor and

 Among the 144 patients who had their second biopsies collected after the result of the first biopsy was reported, 48% of patients with a negative first test (PD-L1 expression = 0%) had a positive result on the second test (PD-L1 expression \geq 1%) (**Table 4**)

- Of patients with high PD-L1 expression (50%-100%) on their first test, 22% had intermediate (1%-49%) or negative (0%) PD-L1 expression on their second test
- Of patients with intermediate PD-L1 expression (1%-49%) on their first test, 57% had negative (0%) or high (50%-100%) PD-L1 expression on their second test

Table 4. Agreement for PD-L1 expression in patients whose second biopsy was collected after the first PD-L1 test was reported

		S			
		PD-L1 expression cutoffs (% TC)			
	First biopsy (reference)	0%, n (%)	1%-49%, n (%)	50%-100%, n (%)	Total, n (%)
PD-L1 expression cutoffs (% TC)	0%	38 (53)	27 (38)	7 (10)	72 (100) ^b
	1%-49%	13 (30)	19 (43)	12 (27)	44 (100)
	50%-100%	1 (4)	5 (18)	22 (79)	28 (100) ^b

^aThe 144 patients who had their second biopsy collected after the PD-L1 test result of the first biopsy was reported were included in this analysis; bThe different categories do not add up to 100% due to rounding.

Conclusions

- PD-L1 expression on TCs was variable across biopsy sites in patients with lung cancer
- There was poor agreement between paired primary and metastatic biopsies regardless of the cutoff used for PD-L1 expression
- The discrepancy in PD-L1 expression between primary tumor and metastases is consistent with the results of other studies⁷⁻⁹
- Possible limitations of our study include the lack of controls for interobserver variability and heterogeneity of PD-L1 expression within the same biopsy
- This real-world study further highlights the heterogeneity of PD-L1 expression between paired biopsies from primary lung tumor and metastatic sites in lung cancer
- Further studies are required to uncover the mechanisms leading to differences in PD-L1 expression between the primary tumor and metastatic sites and the impact of these differences on clinical practice, including treatment selection and efficacy of PD-L1 inhibitors

References

- 1. OPDIVO® (nivolumab) [package insert]. Princeton, NJ: Bristol-Myers Squibb Company; May 2020. 2. KEYTRUDA® (pembrolizumab) [package insert]. Whitehouse Station, NJ: Merck & Co; April 2020.
- TECENTRIQ® (atezolizumab) [package insert]. San Francisco, CA: Genentech, Inc.; May 2020.
- 4. IMFINZI® (durvalumab) [package insert]. Wilmington, DE: AstraZeneca Pharmaceuticals LP;
- Herbst RS, et al. *Lancet* 2016;387:1540-1550.
- 6. Borghaei H, et al. N Engl J Med 2015;373:1627-1639.
- 7. Takamori S, et al. *Anticancer Res* 2017;37:4223-4228.
- 8. Saito Y, et al. J Thorac Dis 2019;11:4982-4991.
- 9. Ilie M, et al. Ann Oncol 2016;27:147-153.
- 10. PD-L1 IHC 28-8 pharmDx [package insert]. Santa Clara, CA: Agilent Company; May 2020.
- 11. PD-L1 IHC 22C3 pharmDx [package insert]. Santa Clara, CA: Agilent Company; February 2020.
- 12. VENTANA® PD-L1 (SP142) Assay [package insert]. Mannheim, Germany: Roche Diagnostics GmbH; May 2020.

Acknowledgments

- Dako, an Agilent Technologies, Inc. company, for collaborative development of the PD-L1 IHC 28-8 pharmDx assay (Santa Clara, CA)
- Bristol-Myers Squibb Company (Princeton, NJ)
- The study was supported by Bristol-Myers Squibb Company
- Statistical analysis was conducted by Derrick Gallagher, PhD, and Timothy Ambrose, MS, of BioStat Solutions, Inc., funded by Bristol-Myers Squibb Company
- All authors contributed to and approved the presentation; writing and editorial assistance
- were provided by Thierry Deltheil, PhD, and Jay Rathi, MA, of Spark Medica Inc, funded by Bristol-Myers Squibb Company