Accessing Genomic Alternations in Chronic Lymphocytic Leukemia using an NGS-based Comprehensive Genomic Profiling Assay(#1303)

> Segun C. Jung, PhD segun.jung@neogenomics.com

# Background

- For detecting copy number abnormalities (CNAs), fluorescence in situ hybridization (FISH) and conventional cytogenetics (CC) are the gold standard
- NGS is emerging as a comprehensive assay that can detect CNAs as well as SNVs, INDELs and loss of heterozygosity (CN-LOH) at much higher resolution
- Thus, identifying CNA events in addition to mutations and RNA fusions may help characterize the highly complex genetic landscape of hematologic malignancies

### A <u>comprehensive genomic profiling (CGP)</u> approach to interrogate <u>hematologic malignancies</u> using a novel <u>multimodal next generation sequencing</u> assay

#### • 297 genes (DNA)

#### SNV, INDEL, CNV

#### Genomic backbone in 14 chromosomes

213 genes (RNA)

|    | ABI1   | ABL1     | ABL2   | ACTN4    | ADAMTS17 | AFDN    | AFF1    | AFF3      | AGGF1   | ALK      |
|----|--------|----------|--------|----------|----------|---------|---------|-----------|---------|----------|
| AR | HGAP26 | ARHGEF12 | ATF7IP | ATIC     | ATP2A1   | ATP5L   | BCL11B  | BCL2      | BCL3    | BCL6     |
|    | BCR    | BIN2     | BIRC3  | CALR     | CAPRIN1  | CASC5   | CBFB    | CBL       | CCDC6   | CCDC88C  |
| C  | COND1  | CCND2    | CCND3  | CD274    | CDK6     | CDKN2A  | CEBPA   | CEBPD     | CEBPE   | CEBPG    |
| C  | EP85L  | CHD1     | CHIC2  | CHMP2A   | CIITA    | CNTRL   | COL1A1  | CPSF6     | CREBBP  | CRLF2    |
| 0  | CSF1R  | CTLA4    | CXCR4  | DEK      | DTD1     | DUSP22  | EBF1    | EIF4A1    | ELL     | EML1     |
| E  | EP300  | EPOR     | EPS15  | ERC1     | ERG      | ERVK3-1 | ETV6    | FGFR1     | FGFR1OP | FGFR1OP2 |
| F  | GFR3   | FIP1L1   | FLT3   | FNBP1    | FOXO4    | FOXP1   | FRYL    | FUS       | GAS7    | GIT2     |
|    | GLIS2  | GOLGA4   | GPHN   | GPI      | GUSB     | HIP1    | HLF     | HNRNPA2B1 | ID4     | IKZF1    |
|    | IKZF2  | IKZF3    | IL3    | IRF4     | IRF8     | JAK2    | KANK1   | KAT6A     | KLF2    | KMT2A    |
|    | LAIR1  | LDHA     | LMNA   | LRRFIP1  | MAF      | MAFB    | MALT1   | MAML2     | MAP4    | MECOM    |
| Ν  | /IEF2D | MKL1     | MLF1   | MLLT1    | MLLT10   | MLLT11  | MLLT3   | MLLT6     | MUC1    | MYB      |
|    | MYC    | MYH11    | MYO18A | MYO1F    | NDE1     | NF1     | NFKB2   | NIN       | NOTCH1  | NOTCH2   |
|    | VPM1   | NRIP1    | NTRK1  | NTRK2    | NTRK3    | NUP214  | NUP98   | P2RY8     | PAG1    | PAX5     |
|    | PBX1   | PCM1     | PDCD1  | PDCD1LG2 | PDE4DIP  | PDGFRA  | PDGFRB  | PGD       | PICALM  | PLAG1    |
|    | PML    | PRDM16   | PRDM9  | PRKG2    | PTK2B    | PVT1    | RAB7A   | RABEP1    | RARA    | RBM15    |
| H  | RBM6   | RCSD1    | ROS1   | RPL19    | RPL5     | RPN1    | RUNX1   | RUNX1T1   | SART3   | SEMA6A   |
| 0, | SEPT2  | SEP73    | SEPT5  | SEPT6    | SEPT9    | SET     | SETD2   | SNX2      | SPECC1  | SPTBN1   |
| S  | QSTM1  | SSBP2    | STIL   | SYNRG    | TACC1    | TAL1    | TBL1XR1 | TCF3      | TCL1A   | TCL1B    |
| 1  | TERF2  | TET1     | TFG    | TLX1     | TLX3     | TP53BP1 | TP63    | TPM3      | TPR     | TRAC     |
| Т  | RIM24  | TRIP11   | TYK2   | UBE2R2   | VCP      | WDR48   | ZBTB16  | ZCCHC7    | ZEB2    | ZMIZ1    |
| Z  | MYM2   | ZNF384   | ZNF703 |          |          |         |         |           |         |          |

Hematologic malignancies MDS/CMML • JMML • MPN

- AML N
  - Myeloid
- CLL Disorders

| ABL1     | ABL2   | AKT1   | AKT2     | AKT3    | ALK    | ANKRD26  | APC    | ARAF   | ARHGEF1 |
|----------|--------|--------|----------|---------|--------|----------|--------|--------|---------|
| ARID1A   | ARID1B | ARID2  | ASXL1    | ASXL2   | ATG2B  | ATM      | ATP2B  | ATRX   | AXL     |
| B2M      | BAP1   | BCL1   | BCL2     | BCL2L11 | BCL6   | BCOR     | BCORL  | BCR    | BIRC3   |
| BLM      | BRAF   | BRCA1  | BRCA2    | BRIP1   | BTK    | C17orf97 | CALR   | CARD11 | CBFB    |
| CBL      | CBLB   | CBLC   | CCND2    | CCND3   | CD273  | CD274    | CD33   | CD79A  | CD79B   |
| CDC25C   | CDK2   | CDK4   | CDK6     | CDKN1B  | CDKN2A | CDKN2B   | CEBPA  | CHEK2  | CIC     |
| CIITA    | CND2   | CREBBP | CRLF2    | CSF1R   | CSF3R  | CTC1     | CTCF   | CTNNB1 | CUX1    |
| CXCR4    | CYLD   | DAXX   | DCK      | DDX3X   | DDX41  | DIS3     | DKC1   | DNMT1  | DNMT3A  |
| E2A      | EBF1   | EED    | EGFR     | EGLN1   | EGR1   | ELANE    | EP300  | EPCAM  | EPHA2   |
| EPHA7    | EPOR   | ERBB2  | ERBB3    | ERCC4   | ETNK1  | ETV6     | EZH2   | FAM46C | FAM5C   |
| FANCA    | FANCB  | FANCC  | FANCD2   | FANCE   | FANCF  | FANCG    | FANCI  | FANCL  | FANCM   |
| FAS      | FAT1   | FBXW7  | FGFR2    | FGFR3   | FLT2   | FLT3     | FOXO1  | FUBP1  | G6PC3   |
| GAB2     | GATA1  | GATA2  | GATA3    | GFI1    | GNA12  | GNA13    | GNAQ   | GNAS   | GNB1    |
| GSKIP    | HAX1   | HIF1A  | HIST1H1E | HNRNPK  | HRAS   | ID3      | IDH1   | IDH2   | IGF1R   |
| IKBKB    | IKZF1  | IKZF3  | IL7R     | IRAK4   | IRF4   | ITPKB    | JAK1   | JAK2   | JAK3    |
| KDM6A    | KDR    | KEAP1  | КІТ      | KLF2    | KLHL6  | KMT2A    | KMT2C  | KMT2D  | KRAS    |
| LUC7L2   | MALT1  | MAP2K1 | MAP3K1   | MAP3K14 | MAPK1  | MCL1     | MDM2   | MDM4   | MED12   |
| MEF2B    | MET    | MLH1   | MPL      | MSH2    | MSH6   | MTOR     | MYC    | MYCN   | MYD88   |
| NBN      | NF1    | NFKBIE | NHP2     | NOP10   | NOTCH1 | NOTCH2   | NOTCH3 | NPM1   | NRAS    |
| NSD1     | NT5C2  | NTRK1  | NTRK2    | NTRK3   | NUP98  | P2RY8    | PALB2  | PAX5   | PDGFRA  |
| PDGFRB   | PHF6   | PIGA   | PIK3CA   | PIK3CD  | PIK3R1 | PIM1     | PLCG1  | PLCG2  | PML     |
| PMS2     | POT1   | PPM1D  | PRDM1    | PRPF40B | PRPF8  | PRPS1    | PTCH1  | PTEN   | PTPN11  |
| PTPRC    | RAC1   | RAD21  | RB1      | RBBP6   | REL    | RHEB     | RHOA   | RICTOR | RIPK1   |
| RIT1     | RPL11  | RPL35A | RPL5     | RPN1    | RPS10  | RPS15    | RPS17  | RPS26  | RPS7    |
| RTEL1    | RUNX1  | S1PR2  | SAMD9    | SAMD9L  | SAMHD1 | SBDS     | SETBP1 | SETD2  | SF1     |
| SF3A1    | SF3B1  | SGK1   | SH2B3    | SLX4    | SMAD4  | SMARCB1  | SMC1A  | SMC3   | SMO     |
| SOCS1    | SPEN   | SRP72  | SRSF2    | STAG2   | STAT3  | STAT5B   | STAT6  | STK11  | SUZ12   |
| TBL1XR1  | TCAB1  | TERC   | TERT     | TET2    | TET3   | THPO     | TINF2  | TLR2   | TNFAIP3 |
| TNFRSF14 | TP53   | TP63   | TRAF2    | TRAF3   | TSC1   | TSC2     | U2AF1  | U2AF2  | UBR5    |

ZFHX4

XPO1

VHL

WAS

WT1

ZMYM3 ZRSR2

## Multimodal NGS workflow of LDT assay



# **CNA** Detection



- CNV measured by the ratio of tumor to normal DNA abundance
- Certain CNVs not only prognostic, but also predictive biomarker
- Loss of heterozygosity (LOH) is due to allelic imbalance (i.e. heterozygous germline to homozygous somatic mutation

### **CNV detection in Chronic Lymphocytic Leukemia (CLL)**

#### Established for prognosis

| Chromosome | Abnormality | Prevalence(%) | Genes                       | Prognostic<br>significance |
|------------|-------------|---------------|-----------------------------|----------------------------|
| 11q22.3    | loss        | 10-20         | ATM, BIRC3,<br>MRE11, H2AFX | Unfavorable                |
| 12         | gain        | 10-20         | Unknown                     | Intermediate               |
| 13q14      | loss        | 50-60         | DLEU1, DLEU2                | Favorable                  |
| 17p13.1    | loss        | 5-15          | TP53                        | Unfavorable                |

#### Suspected for prognosis

| Chromosome  | Abnormality | Prevalence(%) | Genes                                   | Prognostic<br>significance |
|-------------|-------------|---------------|-----------------------------------------|----------------------------|
| 2p12p25.3   | gain        | 5-30          | ACP1, <b>MYCN</b> , ALK,<br>REL, BCL11A | Unfavorable                |
| 3q          | gain        | 2-19          | Unknown                                 | Unfavorable                |
| 4p15.2p16.3 | loss        | 14            | Unknown                                 | Unfavorable                |
| 8q24.1      | gain        | 5             | MYC                                     | Unfavorable                |
|             |             |               |                                         |                            |

## Frequency of copy number gains and losses in CLL (n=236)



## **CNA detection in Chronic Lymphocytic Leukemia (CLL)**



## 2p gain in CLL



# Conclusions

- NGS and CC results agree with 91% accuracy
- NGS and FISH results agree with 77% accuracy
- CN-LOH was mostly detected on chromosomes 13q, 17p and 22q
- Several pathogenic and VUS mutations were detected that may correlate with the CNAs

# DISCLOSURE

I have relevant financial relationships with the materials and results in this presentation.

- Financial
  - Principal Scientist of Research and Development at NeoGenomics Laboratories
  - Shareholder of Neogenomics Laboratories