Bridging the gap between targeted NGS and FISH gene-level CNV detection capabilities in hematologic malignancies
Christophe N. Magnan • Hyunjun Nam • Shashikant Kulkarni • Segun C. Jung
NeoGenomics Laboratories, Carlsbad, CA, San Diego, CA, Houston, TX, and Aliso Viejo, CA

## Background

Copy Number Variations (CNVS) are prominent features of cancer cells. From a clinical standpoint, their accurate
detection at a low cost is a priority. With resulur increases in the number of markers to be tested, the cost effectiveness

 he e esultine data a emains challenging. We demonstrate large amounts of datata and machine learning can help bridge the
sap between the woo techniques

Methods
We collected the sequencing data for 6,277 patients tested using a custom amplicon based NGS assay designed tod detect Somatic alterations in 297 hematological cancer relevant genes such that at least one concurrent FISH test was als he FISH probe (reported as direct strategy in the various tabless or by using inference rules such as the observed loss
centromere 7 results in the oss of of lat targeted genes on chromosome 7 (reported as indirect 5 trategy in the tables). The annotated genes were then used to curate a training set by extracting 20 features per gene from the aligm ent results
10 of these features were collected from existing CNV detection methods ( PurecN $[11$, $N$ NVkit $[2])$ while 10 others are 10 of these features were collected from existing cNV detection methods (Purec) [11], CNVkit [2]) while 10 others are
ustom normalizations of the gene coverage designed to correct the high coverage varibility that comes with ampicon


Results
Evaluation results are provided in the various tables on the side for both the 8 genes for which the FISH probe used




Conclusion
We show the crv detection



## Complete Validation Results



Validation results for genes with a direct FISH Marker

| Gene | Fish- Postivive cases |  |  | Hsth- Negative cases |  |  | Fist-All ${ }^{\text {cases }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{\text {arm }}$ | Totat cases | Concondant | Senstitity | Totalases | Conorant | Speefitivy | Totat cases | Conoronat | ${ }_{\substack{\text { Acuracy } \\ 9332 \mathrm{c}}}$ |
| ${ }_{\text {CbFB }}$ | ${ }^{23}$ | ${ }_{22}$ | ${ }^{\text {95,65\% }}$ | ${ }_{517}$ | ${ }_{506}$ |  | ${ }_{540}$ | ${ }_{528}^{528}$ | ${ }^{9} 9.778 \%$ |
| ${ }_{\text {EGR1 }}$ |  | ${ }^{169}$ | ${ }_{\text {98.38\% }}$ | ${ }_{1}^{1,541}$ | ${ }_{1}^{1.538}$ | 99,88\% | 1,772 | 1,707 |  |
| Knı2a | ${ }^{27}$ | ${ }^{25}$ | ${ }^{92259 \%}$ | ${ }^{474}$ | ${ }_{4}^{412}$ |  |  |  |  |
| ${ }_{\text {Ner }}$ | ${ }_{15}^{13}$ | ${ }_{1}^{15}$ |  |  | (1,928 | $\xrightarrow{\text { 993.3.0 }}$ (100.0\% |  |  | S00\% |
| tert | 10 | 10 | ${ }^{100.00 \%}$ | ${ }_{1}^{1,73}$ | ${ }_{1}^{1,799}$ | ${ }^{99.19 \%}$ | ${ }_{1,733}$ | ${ }_{1,719}$ |  |
| Tp33 | 76 | 73 | $96.05 \%$ | 1.567 | 1.556 | 99,30\% | 1.643 | 1.629 | 99.1 |

Direct vs Indirect FISH Markers


NGS performances vs FISH probes position (chromosome 7)


NGS performances vs FISH probes position (arm 5q)


References
${ }^{[11] \text { Rester } M, \text { Singh } A, ~ B r a n n o n ~ A, ~ Y u ~} K$, Campbell C, Chiang D, Morrissey $M$ (2016). PurecN: Copy number calling and SNV


