

A Novel Comprehensive RNA-Merging Point Targeted Assay for Clinically Actionable RNA Fusions and P2238 **Aberrant RNAs in Solid Tumors**

Fernando J. Lopez-Diaz^{*1}, Steven P. Rivera², Chenyin Ou², Christophe Magnan¹, Brad Thomas³, Tibor Gyuris¹, Ryan Bender¹, Sally Agersborg², Lawrence Weiss², Vincent Funari². Neogenomics Laboratories, ¹Carlsbad, CA; ²Aliso Viejo, CA; ³Houston TX.*fernando.lopezdiaz@neogenomics.com

Background

Gene fusions are major drivers of cancer and their accurate detection is key for supporting diagnosis and therapy selection. There are more than 65,000 annotated gene fusion events. Current fusions detection strategies are limited to amplicon panels querying only a small number of genes, or whole exome capture based assays, which reduces sensitivity. Hence, multiple small panels are required to capture all relevant fusions, which is prohibitive for small biopsies like fine needle aspirates. Hence, a clinical grade assay able to accurately detect a comprehensive set of most clinically relevant gene fusions for solid tumors is needed.

Methods

We isolated total nucleic acid (TNA) from 141 FFPE tumor specimens or a control sample (Seraseq) and performed pair-ended, strand-specific hybridization-based RNA sequencing on Next-Seq 500 or Novaseq 6000 platforms. We selected 252 fusion genes from NCCN and WHO guidelines, published clinical studies, and the 120 most frequent curated fusions in solid tumors from COSMIC (v91). These fusions are clinically relevant to most frequent cancers, including breast, colorectal, lung, lymphoma, pancreatic, prostate, salivary gland, sarcomas, and thyroid cancers. Chimeric probes were synthetized targeting fusion RNA sequences for 2230 selected breakpoints and exon junction regions of aberrant RNAs, including EGFRvIII, MET exon 14 skipping, ARv7 and ARv9. We also targeted the full coding region of 27 genes whose change in expression may suggest translocations and mutations, or have diagnostic value. Fusions were called by a custom pipeline using 3 fusion callers and a machine-learning algorithm. The PCR-based Archer FusionPlex assays and RT-PCR followed by Sanger were used as orthogonal validation methods.

Results

- This single RNA fusion assay can detect at least 1194 unique known fusions pairs involving 1104 genes with 250 core fusion genes compared to 63 or 47 fusion genes from other commercially available NGS assays.
- CLIA assay validation was conducted on 146 unique clinical FFPE samples from various tumor types.
- ✤ 206 unique genes were detected in 1 or more gene fusions. The assay detected 116/121 high confidence fusions reported in our CLIA Archer Sarcoma and Comprehensive Thyroid & Lung (CTL) assays. 41 additional fusions not detected by Archer were confirmed by Sanger sequencing.
- ✤ The assay has 95.8% sensitivity (141/147) and 100% specificity, as all fusions were confirmed by either orthogonal assay.
- ✤ We also detected MET exon 14 skipping, EGFRvIII with 100% sensitivity and 100% specificity. Importantly, in two samples we detected MET exon 14 skipping not predicted from DNA mutation analysis showing the sensitivity of the approach.
- ✤ 55 novel fusions were detected by capturing only one of the partner genes.

Conclusions and Future Directions

We developed a novel and efficient breakpoint targeted fusion detection RNA-seq assay from extracted TNA from FFPE samples that can comprehensively profile thousands of clinically actionable RNA fusions and aberrant RNAs in solid tumors. Future directions include validating the built-in gene expression module to complement even further the characterization of solid tumors by integrating the full spectrum of RNA alterations from this assay with DNA sequencing assays reporting mutations/CNVs thus enhancing Precision Oncology alternatives for cancer patients.

Data

Figure 1: Schematic representation of gene fusions breakpoints and the advantage for fusion detection on mRNA.

RT-PCR+ Sanger)

Figure 2: A new Solid Tumor Gene Fusion RNA-Seq assay workflow. Starting with FFPE total nucleic acid extraction, the assay involves an RNA fusion sequence- targeted, hybridization capture-based, stranded pair-ended RNA-sequencing. Key step resides on custom based design of capture baits mapping to the chimeric RNA sequence` as deduced from chromosomal breakpoints in annotated private and public databases.

Gene Fusions Detection: RNA vs. DNA Detection

250 clinically relevant fusion genes								
ABL1	C11orf95	CREB1	ESRP1	HERPUD1	MAST2	NOTCH2	PML	SET
ACSL3	CAMTA1	CREB3L1	ETV1	HEY1	MEAF6	NPM1	POU5F1	SLC34
АСТВ	CANT1	CREB3L2	ETV4	HIP1	MET	NR4A3	PPARG	SLC45
ACTL6A	CAPZA2	CREBBP	ETV5	HMGA2	MET e14 *	NRG1	PRCC	SND1
AFDN	CARS1	CRTC1	ETV6	HMGN2P46	MKRN1	NTRK1	PRKACA	SNUR
AFF1	CBFA2T3	CRTC3	EWSR1	HNRNPA2B1	MLLT1	NTRK2	PRKAR1A	SRF
AFF3	CCDC170	CSF1	EZR	IL2RB	MLLT10	NTRK3	PRKD1	SRGA
AFF4	CCDC6	CTLA4	FAM131B	IRF4	MLLT11	NUP214	PRKD2	SS18
AHRR	CCNB3	CTNNB1	FEV	ІТК	MLLT3	NUP98	PRKD3	SSX1
АКАР9	CCND1	CTNNBL1	FGFR1	JAK2	MN1	NUTM1	PTPRK	SSX2
АКТЗ	CCND2	DDIT3	FGFR2	JAZF1	MPRIP	NUTM2A	RAD51B	SSX4B
ALK	CCND3	DDX3X	FGFR3	KAT6A	MRTFB	NUTM2B	RAF1	STAT6
AR	CD274	DDX5	FGFR4	KDM5A	MSH2	OMD	RANBP2	STIL
ARv7*	CD74	DHH	FLI1	KIAA1549	MYB	PAN3	RARA	STRN
ARv9*	CDH11	DNAJB1	FLT3	KIF5B	MYBL1	PATZ1	RASGEF1A	SUZ12
ARID1A	CDK4	DUX4	FOXO1	KIT	MYC	PAX3	RET	SYK
ASPSCR1	CDK6	EGFR	FOXP1	KLK2	MYH9	PAX7	RHEBL1	TACCE
ATF1	CDKN2D	EGFRvIII*	FRK	KMT2A	MYLK	PAX8	ROS1	TAF15
ATIC	CHCHD7	ELK4	FUS	KNL1	NAB2	PBX1	RPS6KC1	TAL1
AXL	CIC	ELL	GLI1	KRAS	NCOA1	PCM1	RSPO3	TBL1X
BCOR	CIITA	EML4	GLIS1	LIFR	NCOA2	PDGFB	RUNX1	TCF12
BCR	CLTC	EPC1	GLIS2	LMNA	NCOA4	PDGFRA	RUNX1T1	TCF3
BRAF	CNBP	EPS15	GLIS3	LPP	NDRG1	PDGFRB	SDC4	TCF7L
BRCA1	COA5	ERBB2	GNAS	MAML1	NFATC2	PHF1	SEC31A	TEAD1
BRCA2	COL1A1	ERG	GOPC	MAML2	NFIB	РІКЗСА	SEPTIN6	TEAD2
BRD4	COL1A2	ESR1	HAS2	MAST1	NOTCH1	PLAG1	SEPTIN9	TEAD

Table 1. the actionable genes reported on the universal fusion comprehensive fusions pane

RNA Fusions Capture-based Targeted RNA-seq Assay Workflow

Actionable Gene Expression Module (*: not validated yet)

RNA-seq vs. DNA-seq Mutations Testing for Splicing Alterations

Sample	MET exon 14 skippin by RNA-Seq	Orthogonal result (RT- PCR + Sanger)	All MET DNA mutation	MET Splice site mutation
#1	Positive	Positive	D1028N	negative
#2	Positive	Positive	negative	negative

Figure 6. Diagram of splicing inducing MET DNA mutations and clinical results from RNA-seq-vs. DNA sequencing results for 2 MET exon 14 Positive samples also analyzed by a CLIA validated NGS DNA test. 83 total samples were tested for MET exon 14 skipping.

New Fusions and New Partner Fusion Genes Detection

Sanger confirmed Fusions & Novel Fusions

- **Novel fusions:** one sided capture of novel fusion partners

Figure 7. Coverage by capture probes on new fusions confirmed by RT-PCR +Sanger sequencing. Percentage of fusions targeted by the probes at both sides or one side of the fusion is indicated

	Tested tumor cellularity	Sensitivity	Specificity
S	20%	95.8%	100.0%
gene B)	20%	95.5%	100.0%
scripts Ding)	20%	100.0%	100.0%
scripts	20%	100.0%	100.0%

 Table 3. Performance results from accuracy experiments

Known Fusions: 2230 custom capture probes for known gene fusions ✓ **1194** unique gene pairs

> Probes for breakpoints on **1104** unique partner genes enabling the capture of fusions to anywhere on the transcriptome.