INTRODUCTION

DNA methylation in AML/MDS plays a major role in the pathogenesis of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). The major genes involved in DNA methylation in AML/MDS are IDH1 and IDH2, TET2 and DNMT3A. Mutations in IDH1/2 result in the production of an aberrant metabolite, 2-hydroxyglutarate, which acts as a competitive inhibitor of alpha-ketoglutarate and inhibits TET2 oxidation of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Mutations in TET2 or IDH1/2 are associated with reduced levels of 5hmC and genomic hypermethylation. TET2 mutations were detected in 15 (7.5%) of the 198 patients. IDH1/2 mutations were detected in 201 of the 1182 (17%). IDH1 was detected in 87 (7.4%). IDH2 was detected in 112 (10.1%), including 6 patients with mutations in both IDH1 and IDH2.

OBJECTIVE

Toward better understanding of interaction between these genes, the mutation profile of these genes was analyzed in patients with AML/MDS.

SAMPLES AND METHODS

Samples

1182 bone marrow aspirates

DNA extraction

DNA was extracted from bone marrow aspirate using the QIamp DNA Mini Kit

Sequencing

TruSight Myeloid Next Generation Sequencing Panel (Illumina, San Diego, CA) covering hot spot mutations in 54 genes

Average depth of sequencing of 10,000X

RESULTS

1. Co-Occurrence of IDH1 & IDH2 Mutations
 - IDH2 mutations were detected in 201 of the 1182 (17%).
 - IDH1 was detected in 87 (7.4%).
 - IDH2 was detected in 112 (10.1%), including 6 patients with mutations in both IDH1 and IDH2.

2. Co-Occurrence of TET2 & IDH1/2 Mutations
 - TET2 mutations were detected in 15 (7.5%) of the patients with IDH1/2 mutations.
 - There was significant difference (P=0.03) in VAF between IDH1/2 and TET2.
 - Nine patients showed comparable VAF while 6 patients showed completely different VAF, suggesting subclonal heterogeneity.

3. Co-Occurrence of DNMT3A & IDH1/2 Mutations
 - DNMT3A mutations were detected in 3 patients.
 - There was no significant difference in VAF between IDH1/2 and DNMT3A.
 - While there was no significant difference in VAF between IDH1 and DNMT3A, VAF in IDH1 was <50% in 6 of these patients and in DNMT3A in 3 patients.

4. Co-Occurrence of ASXL1 & IDH1/2 Mutations
 - ASXL1 mutation was detected in 35 patients.
 - High Frequency of IDH1/2 and ASXL1 mutations: 5 (IDH1/2 mutations and ASXL1 mutation were detected in 25 patients with IDH1/2 mutations (7%). The VAFs of the two mutations were overall similar without statistical difference.

5. Co-Occurrence of TP53 & IDH1/2 Mutations
 - TP53 mutation was detected in 24 patients.
 - Twenty four patients had TP53 mutation, of which 16 had IDH1 mutation and 8 had IDH2 mutation, which is disproportional with the prevalence of IDH1 mutation.
 - There was no statistically significant difference in VAF between TP53 and IDH1/2, but 4 of these patients had both DNMT3 and IDH2 mutations and one had both IDH1 and IDH2 mutations.
 - None of the patients with TP53 mutation had TET2 mutation.

CONCLUSIONS

- IDH1 mutations may coexist with IDH1 and TET2 mutations. This co-mutation appears to be in the same clone in some patients and in a separate clone in others.
- The presence of VAF>50% in 6.5% of patients, suggesting homozygosity, along with co-presence of IDH1 and IDH2 and TET2 mutations suggests possible dosage effects in the biology of MDS/AML.
- The high rate (29%) of co-presence of DNMT3A with IDH1/2 mutations suggests cooperation between the two mechanisms in influencing DNA methylation and leukemogenesis.
- The relatively high incidence of TP53 mutation in IDH1 patients suggests that IDH1 mutation might be associated with more aggressive disease than IDH2.
- This data suggests that there is interaction and significant interclonal and intraclonal heterogeneity in DNA methylation genes in AML/MDS.
- Complete profiling of these genes is necessary for better understanding and proper prediction of clinical behavior particularly when patients are treated with DNA methylation inhibitors.

SAMPLES AND METHODS

- DNA was extracted from bone marrow aspirate using the QIamp DNA Mini Kit
- TruSight Myeloid Next Generation Sequencing Panel (Illumina, San Diego, CA) covering hot spot mutations in 54 genes
- Average depth of sequencing of 10,000X

OBJECTIVE

Toward better understanding of interaction between these genes, the mutation profile of these genes was analyzed in patients with AML/MDS.